
1

IPS Protocol Description

The IPS communication protocol is developed for use in personal and

automotive GPS and GLONASS trackers which transfer data to a satellite

monitoring server using the TCP or the UDP protocol.

Table of Contents

TCP Data Transfer .. 2

General Structure of TCP Messages .. 2

Packet Types .. 3

Login Packet ... 4

Short Data Packet ... 5

Extended Data Packet .. 6

Additional Parameters (Params) ... 8

Black Box Packet .. 10

Ping Packet ... 10

Commands ... 11

Upload Firmware Command ... 11

Upload Configuration Command ... 11

Send Message to Driver Command .. 12

Query Snapshot Command .. 12

Snapshot Packet ... 13

Query DDD File Command ... 14

DDD File Information Packet ... 15

DDD File Block Packet .. 16

2

Send Custom Message Command ... 17

UDP Data Transfer ... 19

General Structure of UDP Messages .. 19

Data Compression .. 19

Checksum ... 22

Annex ... 25

TCP Data Transfer

The TCP connection must be maintained throughout the entire data

transfer process. If the device disconnects immediately after sending the

message, the server does not have time to send a response to the device, and

traffic consumption increases.

While using one TCP connection, you should transfer data from one

device. Otherwise, the system registers only the data of the device whose ID is

the first in the incoming data list.

To save traffic, you can use the UDP protocol. However, it does not

guarantee that the messages will be delivered.

General Structure of TCP Messages

All data is received in text format as a packet which looks as follows:

#PT#msgCRC\r\n

Field Description

3

Start byte

PT Packet type (see the Packet types table)

Delimiter

Msg Text of the message

CRC CRC16 checksum

\r\n End of the packet (0x0D0A in HEX)

Packet Types
Type Description Sender

L Login packet Device

AL Answer to the login packet Server

SD Short data packet Device

ASD Answer to the short data packet Server

D Extended data packet Device

AD Answer to the extended data packet Server

B Black box packet Device

AB Answer to the black box packet Server

P Ping packet Device

AP Answer to the ping packet Server

US Firmware packet Server

UC Configuration packet Server

M Message to/from the driver Server/Device

AM Answer to the message from the driver Server

QI Query snapshot command Server

I Snapshot packet Device

AI Answer to the snapshot packet Server

QT Query DDD file command Server

4

IT DDD file information packet Device

AIT Answer to the DDD file information packet Server

T DDD file block packet Device

AT Answer to the DDD file block packet Server

Login Packet

The packet is used for the device authorization on the server. Every TCP

connection starts with sending this packet from the device to the server. Other

data should be transferred only after the server confirms the successful

authorization of the device.

The login package looks as follows:

 #L#Protocol_version;IMEI;Password;CRC16\r\n

Field Description

L Packet type: login packet.

Protocol_version Current protocol version. In this case, 2.0.

; Delimiter.

IMEI IMEI, ID or serial number of the controller.

Password Password to access the device. If there is none, NA is
transmitted.

CRC16 Checksum. See the Checksum section.

Server Response to the L Packet

Type Code Meaning Example

AL 1 Unit successfully authorized. #AL#1\r\n

5

0 Connection rejected. Possible reasons:

• Incorrect protocol version. The current

one is 2.0;

• The unit is not created on the server;

Incorrect packet structure.

#AL#0\r\n

01 Password verification error. #AL#01\r\n

10 Checksum verification error. #AL#10\r\n

Short Data Packet

The packet contains only navigation data and looks as follows:

 #SD#Date;Time;Lat1;Lat2;Lon1;Lon2;Speed;Course;Alt;Sats;CRC16\r\n

Field Description

SD Packet type: short data packet.

Date Date in the DDMMYY format, UTC±00:00. If there is no data, NA
is transmitted.

Time Time in the HHMMSS format, UTC±00:00. If there is no data, NA
is transmitted.

Lat1;Lat2 Latitude. If there is no data, NA;NA is transmitted. See Annex.

Lon1;Lon2 Longitude. If there is no data, NA;NA is transmitted. See Annex.

Speed Speed value, integer (km/h). If there is no data, NA is transmitted.

Course Direction of movement, integer (from 0 to 359 degrees). If there is
no data, NA is transmitted.

Alt Altitude, integer (metres). If there is no data, NA is transmitted.

Sats Number of satellites, integer. If there is no data, NA is
transmitted.

6

CRC16 Checksum. See the Checksum section.

If the Date and Time fields contain NA, the message is registered with the

current server time.

Server Response to the SD Packet

Type Code Meaning Example

ASD -1 Incorrect packet structure. #ASD#-1\r\n

0 Incorrect time. #ASD#0\r\n

1 Packet successfully registered. #ASD#1\r\n

10 Error receiving coordinates. #ASD#10\r\n

11 Error receiving speed, course, or altitude. #ASD#11\r\n

12 Error receiving the number of satellites. #ASD#12\r\n

13 Checksum verification error. #ASD#13\r\n

Extended Data Packet

The packet contains additional data structures and looks as follows:

#D#Date;Time;Lat1;Lat2;Lon1;Lon2;Speed;Course;Alt;Sats;HDOP;Inputs;

Outputs;ADC;Ibutton;Params;CRC16\r\n

Field Description

D Packet type: extended data packet.

Date Date in the DDMMYY format, UTC±00:00. If there is no data,
NA is transmitted.

Time Time in the HHMMSS format, UTC±00:00. If there is no data,
NA is transmitted.

Lat1;Lat2 Latitude. If there is no data, NA;NA is transmitted. See Annex.

7

Lon1;Lon2 Longitude. If there is no data, NA;NA is transmitted. See Annex.

Speed Speed value, integer (km/h). If there is no data, NA is
transmitted.

Course Direction of movement, integer (from 0 to 359 degrees). If there
is no data, NA is transmitted.

Alt Altitude, integer (metres). If there is no data, NA is transmitted.

Sats Number of satellites, integer. If there is no data, NA is
transmitted.

HDOP Horizontal Dilution of Precision. It shows the accuracy of the
coordinates transmitted by the device. The smaller this value
is, the more accurate the coordinates are. If there is no data,
NA is transmitted.

Inputs Digital inputs. Every bit of the number (beginning from the low-
order one) corresponds to one input. Integer. If there are none,
NA is transmitted.

Outputs Digital outputs. Every bit of the number (beginning from the
low-order one) corresponds to one output. Integer. If there are
none, NA is transmitted.

ADC Analogue inputs. Fractional numbers separated by commas.
Numbering from 1. If there are none, an empty string is
transmitted. Example: 14.77,0.02,3.6

Ibutton Driver key code. A string of arbitrary length. If there is none, NA
is transmitted.

Params Additional parameters. Separated by commas. See Additional
Parameters.

CRC16 Checksum. See the Checksum section.

8

If the Date and Time fields contain NA, the message is registered with the

current server time.

Additional Parameters (Params)

Each parameter has the following structure:

 Name:Type:Value

Examples of additional parameters: count1:1:564, fuel:2:45.8, hw:3:V4.5,

SOS:1:1

Field Description

Name Parameter name. In lowercase. The maximum number of
characters is 38. Invalid characters: space, comma, colon, number
sign, line feed and carriage return (\r\n).

Type Parameter type:

1 — Integer / Long;

2 — Double;

3 — String (the maximum number of characters: 1344).

Value Parameter value. Depends on the parameter type.

If the value does not correspond to the parameter type, the parameter will not

be registered.

The protocol does not limit the number of the transmitted parameters.

9

Fixed parameters

To transmit an alarm message highlighted in red, a parameter of the first

(Integer) type is used. The parameter name is SOS, in uppercase. A value of 1

means the alarm is triggered.

To display a message in the Chat with drivers pop-up window, a

parameter of the third (String) type is used. The parameter name is text.

To determine the position by base stations (LBS), it is required to

register the following parameters of the first (Integer) type:

mcc Mobile country code

mnc Mobile network code

lac Local area code

cell_id Cell identification

If you want to pass several LBS structures, you should add index numbers

to the parameter names. Examples: mcc1=12, mnc1=12, lac1=12, cell_id1=12,

mcc2=13, mnc2=13, lac2=13, cell_id2=13.

Server Response to the D Packet

Type Code Meaning Example

AD -1 Incorrect packet structure. #AD#-1\r\n

0 Incorrect time. #AD#0\r\n

1 Packet successfully registered. #AD#1\r\n

10 Error receiving coordinates. #AD#10\r\n

11 Error receiving speed, course, or altitude. #AD#11\r\n

12 Error receiving the number of satellites or
HDOP.

#AD#12\r\n

13 Error receiving Inputs or Outputs. #AD#13\r\n

14 Error receiving ADC. #AD#14\r\n

15 Error receiving additional parameters. #AD#15\r\n

10

16 Checksum verification error. #AD#16\r\n

Black Box Packet

The black box packet is used to transmit messages for the past period.

The maximum number of messages that can be transmitted in one packet is

5000. The packet looks as follows:

#B#Date;Time;Lat1;Lat2;Lon1;Lon2;Speed;Course;Alt;Sats|Date;Time;Lat1;La

t

2;Lon1;Lon2;Speed;Course;Alt;Sats|Date;Time;Lat1;Lat2;Lon1;Lon2;Speed;

Course;Alt;Sats|CRC16\r\n

Field Description

B Packet type: black box packet.

Data A set of short or extended data packets without the packet type
field. The packets are separated by the vertical bar (|).

CRC16 Checksum. See the Checksum section.

Server Response to the B Packet

Type Value Meaning Example

AB Number Number of packets successfully
registered.

#AB#3\r\n

Empty string Checksum verification error. #AB#\r\n

Ping Packet

The packet is used to maintain an active TCP connection with the server

and to verify the availability of the channel. The packet looks as follows:

#P#\r\n

11

Server Response to the P Packet

Type Meaning Example

AP Positive server response. #AP#\r\n

Commands

Upload Firmware Command

The command is used to transfer the firmware data from the server to the

controller. The packet looks as follows:

#US#Sz;CRC16\r\nBIN

Field Description

US Packet type: firmware packet.

Sz Size of the binary data of the firmware (bytes).

CRC16 Checksum. See the Checksum section.

BIN Firmware in binary format.

Upload Configuration Command

The command is used to transfer the configuration file from the server to

the controller. The packet looks as follows:

#UC#Sz;CRC16\r\nBIN

Field Description

UC Packet type: configuration packet.

Sz Size of the configuration file (bytes).

12

CRC16 Checksum. See the Checksum section.

BIN Contents of the configuration file.

Send Message to Driver Command

The command is used to exchange text messages between the server and

the driver. The packet format is the same for the server and for the controller:

#M#Msg;CRC16\r\n

Field Description

М Packet type: message to/from the driver.

Msg Text of the message.

CRC16 Checksum. See the Checksum section.

Server Response to the M Packet

Type Code Meaning Example

AM 1 Message received. #AM#1\r\n

0 Error receiving messages. #AM#0\r\n

01 Checksum verification error. #AM#01\r\n

Query Snapshot Command

The command is sent from the server to the controller to request a

photograph.

13

The packet looks as follows:

#QI#\r\n

Field Description

QI Packet type: the Query snapshot command.

Snapshot Packet

The packet is used to transfer the image data to the server. The image is

divided into blocks of bytes, each of which is sent to the server as a separate

packet. The recommended block size is up to 50 KB. If the server cannot receive

any image block, it disconnects. In this case, it is recommended to reduce the

size of the blocks.

The packet looks as follows:

#I#Sz;Ind;Count;Date;Time;Name;CRC16\r\nBIN

Field Description

I Packet type: snapshot packet.

Sz Size of the binary data of the packet (for example, 51200 bytes).

Ind Index number of the transmitted block (numbering from zero).

Count Number of the last block (numbering from 0).

14

Date Date in the DDMMYY format, UTC±00:00.

Time Time in the HHMMSS format, UTC±00:00.

Name Name of the transmitted image.

CRC16 Checksum. See the Checksum section.

BIN Binary image block of the Sz size.

Server Response to the I Packet

Type Block
number

Code Meaning Example

AI Ind 1 Packet received. #AI#Ind;1\r\n

AI Ind 0 Error receiving packet. #AI#Ind;0\r\n

AI Ind 01 Checksum verification error. #AI#Ind;01\r\n

AI NA 0 Incorrect packet structure. #AI#NA;0\r\n

AI None 1 Image fully received and saved
in server.

#AI#1\r\n

Ind. The index number of the transmitted image block. Integer.

When the image is fully received and saved in the server, the server

response contains only one parameter: code (#AI#1\r\n).

Query DDD File Command

The command is sent from the server to the device to request a tachograph

file.

15

The packet looks as follows:

#QT#DriverID\r\n

Field Description

QT Packet type: the Query DDD file command.

DriverID Driver identification.

DDD File Information Packet

The packet contains information about the tachograph file transmitted to

the server. All fields are required. This information is necessary to save the file

correctly and bind it to the appropriate driver in the server. The saved file is named

as follows: driverid_yyyymmdd_hhmmss.ddd. You should transfer this packet

before transmitting the DDD file.

 The packet looks as follows:

#IT#Date;Time;DriverID;Code;Count;CRC16\r\n

Field Description

IT Packet type: DDD file information packet.

Date Date in the DDMMYY format, UTC±00:00.

16

Time Time in the HHMMSS format, UTC±00:00.

DriverID Driver identification.

Code Error code. If there are no errors, an empty string is transmitted.

Count Total amount of the DDD file blocks.

CRC16 Checksum. See the Checksum section.

Server Response to the IT Packet

Type Code Meaning Example

AIT 1 Packet received. #AIT#1\r\n

0 Error receiving packet. #AIT#0\r\n

01 Checksum verification error. #AIT#01\r\n

DDD File Block Packet

The packet is used to transfer DDD file data blocks and looks as follows:

#T#Code;Sz;Ind;CRC16\r\nBIN

Field Description

T Packet type: DDD file block packet.

Code Error code. If there are no errors, an empty string is transmitted.

Sz Size of the binary data of the packet (bytes).

Ind Index number of the transmitted block (numbering from zero).

CRC16 Checksum. See the Checksum section.

BIN Binary file block of the Sz size.

17

Server Response to the T Packet

Type Block
number

Code Meaning Example

AT

Ind 1 Packet received. #AT#Ind;1\r\n

Ind 0 Error receiving packet. #AT#Ind;0\r\n

Ind 01 Checksum verification error. #AT#Ind;01\r\n

None 1 DDD file fully received and
saved in the server.

#AT#1\r\n

Ind. The index number of the transmitted DDD file block. Integer.

When the image is fully received and saved in the server, the server

response contains only one parameter: code (#AT#1\r\n).

All DDD file block packets should be transmitted using the same TCP

connection as the DDD file information packet.

Send Custom Message Command

The command is used to send custom messages to the device. It allows

to implement additional features necessary for the controller.

In response to the command, you can send a Message to/from the driver

packet. If you need to transfer the position data and other parameters, you can

transmit an extended data packet.

The custom command sent to the device looks as follows:

Msg\r\n

Field Description

Msg Text of the message.

18

19

UDP Data Transfer

The UDP protocol is used only to transfer data from the controller to the

server. It is not possible to send commands from the server to the device using

this protocol.

General Structure of UDP Messages

A UDP packet has the same structure as a TCP packet with the only

difference that the prefix Protocol_version;IMEI is added at the beginning. The

packet transferred using UDP looks as follows:

 Protocol_version;IMEI#PT#MsgCRC\r\n

Field Description

Protocol_version Current protocol version. 2.0 is used now.

; Delimiter.

IMEI IMEI of the device.

Start byte.

PT Packet type. See the Packet types table.

Delimiter.

Msg Text of the message.

CRC CRC16 checksum.

\r\n End of the packet (0x0D0A in HEX).

The SD packet structure (UDP transfer):

2.0;IMEI#SD#Date;Time;Lat1;Lat2;Lon1;Lon2;Speed;Course;Alt;Sats;CRC16\r\n

Data Compression

To save traffic, it is appropriate to use data compression while transferring

packets which contain a large amount of data. The DEFLATE algorithm of the

20

cross-platform «zlib» library is used for compression. Both TCP and UDP

transport protocols are supported. The container should consist of only one

packet in text format.

Compressed Packet Container Structure

Size (bytes) 1 2

Field Head Len Data

Head — 0xFF.

Len. The Data field length (little-endian, 16-bit integer).

Data. The compressed binary data block of the specified size.

Transmitted as it is.

You can transfer the compressed and regular packets of the IPS protocol

simultaneously. The packets sent from the server are always regular (not

compressed) because of their small size.

When implementing the library, the identifiers

Z_DEFAULT_COMPRESSION, Z_DEFLATED, Z_DEFAULT_STRATEGY

affect the result, but the message is valid in any case.

Compressed L Packet Example

HEX:

FF1B00780153F65136D233B0CECC4DCDB4F673B476B4343602002FF404E6

Text:

#L#2.0;imei;NA;A932

Compressed D Packet Example

HEX:

21

FF76007801258CCB0AC24010043F26D77599DE9931ECF4C9D7351EF2050145024625F8FF9818EA540

DD5CDB9290A41215CAB57BABA65AB652FEC28A55564B35A8517CA828AB02532FE86242BEC0E1C1F

AF4020DD3EC33C4C5142330CBE1C79FA6E9BC6F33DDFA7346E8AD8B9A7FEDAAF1DED78D21FEF752

2F7

Text:

231012;153959;5354.49260;N;02731.44990;E;0;0;300;7;1.1;0;0;1,0,0,0;NA;ign:1:1,dparam:2:3.14159

265,tparam:3:lorem,iparam:1:-55,SOS:1:1;4BC3

22

Checksum

The CRC16 checksum should be added to the message as a

hexadecimal number in ASCII characters. The byte order is big-endian.

Example: 0xFC45 => 0x46433435

Checksum Calculation

Packet
type

Explanation

SD Message example:

#SD#Date;Time;Lat1;Lat2;Lon1;Lon2;Speed;Course;Alt;Sats;

CRC16\r\n

The checksum is calculated for the following part of the packet:

Date;Time;Lat1;Lat2;Lon1;Lon2;Speed;Course;Alt;Sats;

B Message example:

#B#Date;Time;Lat1;Lat2;Lon1;Lon2;Speed;Course;Alt;Sats|Date;

Time;Lat1;Lat2;Lon1;Lon2;Speed;Course;Alt;Sats|CRC16\r\n

The checksum is calculated for the following part of the packet:
Date;Time;Lat1;Lat2;Lon1;Lon2;Speed;Course;Alt;Sats|Date;Time;L
at1;Lat2;Lon1;Lon2;Speed;Course;Alt;Sats|

I

US

UC

T

Message example:

#I#51200;0;1;070512;124010;sample.jpg;CRC16\r\nBIN

The checksum is calculated for the BIN field only.

L

SD

The checksum is calculated for the part of the packet between the

23

D

B

M

IT

packet type and the CRC16 field.

 C Code Example for CRC16 Calculation

 static const unsigned short crc16_table[256] =
{
 0x0000,0xC0C1,0xC181,0x0140,0xC301,0x03C0,0x0280,0xC241,
 0xC601,0x06C0,0x0780,0xC741,0x0500,0xC5C1,0xC481,0x0440,
 0xCC01,0x0CC0,0x0D80,0xCD41,0x0F00,0xCFC1,0xCE81,0x0E40,
 0x0A00,0xCAC1,0xCB81,0x0B40,0xC901,0x09C0,0x0880,0xC841,
 0xD801,0x18C0,0x1980,0xD941,0x1B00,0xDBC1,0xDA81,0x1A40,
 0x1E00,0xDEC1,0xDF81,0x1F40,0xDD01,0x1DC0,0x1C80,0xDC41,
 0x1400,0xD4C1,0xD581,0x1540,0xD701,0x17C0,0x1680,0xD641,
 0xD201,0x12C0,0x1380,0xD341,0x1100,0xD1C1,0xD081,0x1040,
 0xF001,0x30C0,0x3180,0xF141,0x3300,0xF3C1,0xF281,0x3240,
 0x3600,0xF6C1,0xF781,0x3740,0xF501,0x35C0,0x3480,0xF441,
 0x3C00,0xFCC1,0xFD81,0x3D40,0xFF01,0x3FC0,0x3E80,0xFE41,
 0xFA01,0x3AC0,0x3B80,0xFB41,0x3900,0xF9C1,0xF881,0x3840,
 0x2800,0xE8C1,0xE981,0x2940,0xEB01,0x2BC0,0x2A80,0xEA41,
 0xEE01,0x2EC0,0x2F80,0xEF41,0x2D00,0xEDC1,0xEC81,0x2C40,
 0xE401,0x24C0,0x2580,0xE541,0x2700,0xE7C1,0xE681,0x2640,
 0x2200,0xE2C1,0xE381,0x2340,0xE101,0x21C0,0x2080,0xE041,
 0xA001,0x60C0,0x6180,0xA141,0x6300,0xA3C1,0xA281,0x6240,
 0x6600,0xA6C1,0xA781,0x6740,0xA501,0x65C0,0x6480,0xA441,
 0x6C00,0xACC1,0xAD81,0x6D40,0xAF01,0x6FC0,0x6E80,0xAE41,
 0xAA01,0x6AC0,0x6B80,0xAB41,0x6900,0xA9C1,0xA881,0x6840,
 0x7800,0xB8C1,0xB981,0x7940,0xBB01,0x7BC0,0x7A80,0xBA41,
 0xBE01,0x7EC0,0x7F80,0xBF41,0x7D00,0xBDC1,0xBC81,0x7C40,
 0xB401,0x74C0,0x7580,0xB541,0x7700,0xB7C1,0xB681,0x7640,
 0x7200,0xB2C1,0xB381,0x7340,0xB101,0x71C0,0x7080,0xB041,
 0x5000,0x90C1,0x9181,0x5140,0x9301,0x53C0,0x5280,0x9241,
 0x9601,0x56C0,0x5780,0x9741,0x5500,0x95C1,0x9481,0x5440,
 0x9C01,0x5CC0,0x5D80,0x9D41,0x5F00,0x9FC1,0x9E81,0x5E40,
 0x5A00,0x9AC1,0x9B81,0x5B40,0x9901,0x59C0,0x5880,0x9841,
 0x8801,0x48C0,0x4980,0x8941,0x4B00,0x8BC1,0x8A81,0x4A40,
 0x4E00,0x8EC1,0x8F81,0x4F40,0x8D01,0x4DC0,0x4C80,0x8C41,
 0x4400,0x84C1,0x8581,0x4540,0x8701,0x47C0,0x4680,0x8641,
0x8201,0x42C0,0x4380,0x8341,0x4100,0x81C1,0x8081,0x4040
};
unsigned short crc16 (const void *data, unsigned data_size)
{
 if (!data || !data_size) return 0;

 unsigned short crc = 0;
 unsigned char* buf = (unsigned char*)data;

 while (data_size--)

 crc = (crc >> 8) ^ crc16_table[(unsigned char)crc ^
*buf++];

24

 return crc;
}

25

Annex

The coordinates are compliant with the NMEA 0183 standard.

DDMM.MM is the format of latitude. Two digits of degrees (DD). If the

degree value consists of one digit, the degree field still contains two digits. That

is, the field is filled with zeros, for example, 01. The degrees are followed by two

digits of integer minutes, a point, and a fractional part of minutes of variable

length. The leading zeros are not omitted. N denotes north (positive) latitude, S

denotes south (negative) latitude.

Example:

55 is a degree value.

44.6025 / 60 = 0,743375 is a minute value.

N is north latitude (positive sign). 55

+ 0,743375 = +55,743375

DDDMM.MM is the format of longitude. Three digits of degrees (DDD). If

the degree value consists of one digit, the degree field still contains three digits.

That is, the field is filled with zeros, for example, 001. The degrees are followed

by two digits of integer minutes, a point, and a fractional part of minutes of variable

length. The leading zeros are not omitted. E denotes east (positive) longitude, W

denotes west (negative) longitude.

Example:

037 is a degree value.

39.6834 is a minute value.

E is east longitude (positive sign).

037 + 39.6834 = +37,66139

5544.6025;N

03739.6834;E

